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Abstract
In this project we apply convolutional neural networks for the task of classifying plankton species from
image data hosted by the National Science Bowl. We approach the problem by initially building simple
and shallow networks and experiment with varying hyperparameters and deeper architectures. We
introduce regularization methods data augmentation to exploit certain image symmetries. We also
experiment on other optimizers for our neural networks to test if they improve generalization ability.
Our final models were able to achieve accuracies as high as 72.6% and cross entropy losses as low as

0.987 on the validation set.

1. Introduction

Plankton play a critically important role in our ecosystem, since they account for a large portion of
photosynthesis that produces oxygen on Earth, and form the foundation of the oceanic food chain. Due
to their importance, measuring and monitoring their populations serve as key indicators on the status
and health of the ocean and the associated ecosystems.

Traditional manual methods of measuring and classifying plankton are laborious and are extremely
infeasible for any sort of large-scale population study. Thus, the goal of the National Science Bowl
Competition was to develop scalable, robust, and automated methods of classifying plankton to
circumvent manual limitations. Such methods could have major impacts and broad applications related

to marine ecosystem health.



2. Dataset
The images used in this project were compiled by the scientists and researchers from the Hatfield
Marine Science Center and was hosted by the National Data Science Bowl Competition on Kaggle [1].
The training set contained a total 30,458 grayscale images labeled according to one of 121 different
classes of plankton. Sample images of the various plankton are shown in Figure 1.
We split the model in 2 parts, a training set consisting of 25,336 images to train our models, while the

rest of the data (5,000 images) is set aside as a validation set to evaluate our models.
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Figure 1: Sample plankton from the dataset

2.1 Preprocessing

Initially the images widely varied in sizes. The width of the images ranged from 40 pixels to as large as
400 pixels wide. In order to feed the images for training, we resized the images all into a uniform size of
80 by 80 pixels. Thus, each image is represented by a 6,400-dimensional vector to use as inputs into the

following models.



3. Methods
3.1 Evaluation Metrics

For this project, we used two types of evaluation metrics. The first being the cross-entropy loss function

that the neural networks will optimize:
n m
1
Leross Entropy = E Z yijlog(gij)
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Where n refers to the number of images, m is the number of classes, y;; is 1 if a particular image i is in

class j, other wise it is 0, and g;; is probability output from the neural network that image i is in class j.

Secondly, we use the more intuitive metric of accuracy defined as:

n
1
Accuracy = 52 1(y; = ;)
i=1

Where y; refers to the true class of image i, and y; refers to the predicted class of image i. While the
two are inherently correlated, accuracy measures the rate of correct classifications, while the cross-

entropy loss takes into account the amount uncertainty of each class prediction per output.

3.2 Data Augmentation

Before a batch of images goes in the model for training they are randomly flipped vertically/horizontally,
rotated between -7 and 7 degrees, and translated 10% in a random direction. Since the images that
undergo these transformations still represent the same image label, training with these augmented
images should help our models become invariant to such transformations. This allows us to artificially

increase the training data so that at every epoch, the model trains on slightly different images.



Figure 2: Original Image on the left being transformed. 90° degree clockwise rotation on top transformation, and 10°

degree clockwise rotation on the bottom transformation.

3.3 Convolutional Neural Networks

In recent years, convolutional neural networks (CNN’s) have become a staple in the field of image
classification and computer vision due to their ability to learn spatial hierarchies of patterns. Various
CNN architectures like the likes of VGG Net [2] and AlexNet [3] have enjoyed profound successes in
classifying a wide variety of objects; winning the ImageNet Large Scale Visual Recognition Challenge,
which have served as the impetus for the development of the next generation of large-scale

classification systems. Inspired by such successes we employ CNN'’s for our classification task.

A typical CNN model contains several main parts: the convolution layer, the sub-sampling layer, the fully
connected linear layers, and the softmax classifier. When building a CNN model as an image classifier,
one or multiple CNN layers are needed and connected in series. The number of CNN layers is highly
significant to the classification accuracy: if the number is too small, the data features will not be fully
abstracted and utilized in the classification task. But when the number of layers is too large, the run time
will increase exponentially and, what is worse, cause some undesirable training problems such as

gradient vanishing or exploding.

The initial optimization algorithm we used was the stochastic gradient descent optimizer with the

learning rate parameter set to 0.01 and momentum parameter 0.9. For our deepest model, we ran into



the problem of exploding gradients, so for that model we lowered the learning rate to 0.004 which

yielded gradient stability.

The first model we created was a 2 convolutional layer and 2 fully connect layer neural network. This
shallow network was chosen as a baseline model before we moved onto deeper models. The
architecture is shown below; each convolutional and fully connected layer used a RelLU activation

function (not shown for brevity):

Model 1: 2C - 2FC
Input: 6400
4
6 Conv K=5,5=1,P=0
3
Max Pool K=2,5=2
3
6 Conv K=5,5=1,P=0
4
Max Pool K=2,5=2
4
FC 400
4
FC 200
4
Output: 121

Figure 3: Architecture of the baseline model (ReLU activations are not shown for brevity)

We experimented with batch sizes of 16, 32, 48, and 64 with our baseline model shown. The results on
the baseline are shown in Figure 4. The results from this experiment are shown in the appendix. Using
the batch size of 16 yielded the lowest validation curve, so we chose it moving forward. In practice

smaller batch sizes tend to allow neutral networks to generalize better. [4]

In total we experimented on 5 convolutional neural networks, each with increasing convolutional and
fully connected layers. The total ranged from 4 to 9 layers. Seeing the success of the VGG Net [3], we

implemented similar architectures onto our own models. In particular, most of the deeper models had



increasing channel sizes with respect to the convolutional layers and had convolutional layers stacked on

top before each max pooling layer. Like VGG, our deeper networks had a kernel size of 3 by 3, a zero-

padding of 1, and a stride of 1. In all our models we used a max pooling layer of kernel size 2 by 2, and a

stride of 2. For all the models, each convolutional and fully connected layer used the RelLU activation.

The full architectures shown in the appendix.

We ran each model for 50 epochs, recording the training and validation metrics for each epoch.

results shown below:

Model

Model 1 (3 Conv + 2FC)
No data augmentation
Model 1 (2C + 2FC)
Model 2 (3C + 2FC)
Model 3 (4C + 2FC)
Model 4 (5C + 3FC)
Model 5 (6C + 3FC)

4, Results

Training
Loss
0.103

1.055
0.779
0.625
0.464
0.332

Training
Accuracy
0.9314

0.665
0.740
0.787
0.836
0.841

Validation
Loss
2.214

1.301
1.064
0.987
0.972
0.995

Table 1: Results on the 5 neural networks

Validation
Accuracy
0.571

0.665
0.693
0.712
0.715
0.726

The

From the results, increasing the number of layers did yield generally higher validation metrics, but as the

layers increased the validation metrics improved very marginally. This marginal increase is exemplified

by how close the validation curves are for the deeper models shown in Figure 5 and Figure 6. Using the

baseline model, Model 1 (3 Conv + 2FC) we saw that using data augmentation mitigated the overfitting

on the model and improved generalization by a significant amount. The shallow baseline model tended

to underfit the data. For the deeper models, there was a greater degree of overfitting after training was

done as indicated by the difference between the validation and training metrics.



Models 3, 4 and 5 were very close in terms of validation metrics. Model 5 (6 Conv + 3 FC) performed
the best in terms of accuracy, while model 4 (5C + 3 FC) performed the best in terms of the cross-

entropy loss.
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Figure 5: Validation Accuracy results

5. Different Optimization Algorithms

Adam [5] and Adagrad [6] are other popular optimizers that fall into the family of adaptive learning
optimizers. These optimizers update each individual parameter to perform larger or smaller updates

depending on their importance with a metric constructed from past gradients. We also consider the use



of the Nesterov variant [6] for the momentum in the stochastic gradient algorithm that updates
gradients based on approximate future parameters. We experiment using these optimizers on Model 5
(6C + 3FC), using the Pytorch default parameters for the optimizers. The results are shown below in

Figure 7.
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Figure 6: Validation loss from different optimizers on Model 5

The Adam optimizer performed the worse out of the other 3 optimizers tested. From the results, the
Adam optimizer shows the best initial loss, but suffers after later epochs. There was little difference
between the regular SGD and Nesterov variant. The Adagrad optimizer converged much more slowly
compared to the SGD counterparts. Ashia et al. [8] observe the same results where the SGD optimizers

performed much better than the adaptive learning optimizers in their experiments on various datasets.

6. Conclusion

Inspired by the successes of convolutional neural networks on the task of image classification, we
utilized VGG-like convolutional neural networks onto the task of classifying plankton. To combat the
problem of overfitting and poor generalization, we utilized data augmentation techniques which were

able to mitigate those problems in our models. Our shallower models tended to underfit the data, but



saw marginal improvements when more layers were added. We experiment using alternative adaptive

gradient optimizers, but they did not outperform our original SGD optimizers. Moving forward in the

future, we would like to implement other methods like creating deeper networks, applying other

regularization techniques like dropout, and applying model ensembles to improve performance metrics.
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Appendix A: Tables and Figures
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Figure 1: Validation loss by batch size using the baseline model

46

Model 1 2C - 2FC

Model 2 3C - 2FC

Model 3 5C - 2FC

Model 4 5C - 3FC

Model 5 5C - 3FC

Input: 6400
4
6 Conv K=5,5=1,P=0
4
Max Pool K=2,5=2
4
6 Conv K=5,5=1,P=0
1
Max Pool K=2,5=2
4
FC 400
4
FC 200
1
Output: 121

Input: 6400
4
20 Conv K=5,5=1,P=0
4
Max Pool K=2,5=2
4
40 Conv K=5,5=1,P=0
4
Max Pool K=2,5=2
4
60 Conv K=3,5=1,P=1
4
Max Pool K=2,5=2
1
FC 400
4
FC 200
1
Output: 121

Input: 6400
4
64 Conv K=3,5=1,P=1
4
Max Pool K=2,5=2
4
128 Conv K=5,5=1,P=0
4
128 Conv K=5,5=1,P=0
4
Max Pool K=2,5=2
4
256 Conv K=5,5=1,P=0
4
256 Conv K=5,5=1,P=0
4
Max Pool K=2,5=2
4
FC 400
4
FC 200
4
Output: 121

Input: 6400
4
64 Conv K=3,5=1,P=1
3
Max Pool K=2,5=2
J
128 Conv K=5,5=1,P=0
3
128 Conv K=5,5=1,P=0
3
Max Pool K=2,5=2
)
256 Conv K=5,5=1,P=0
3
256 Conv K=5,5=1,P=0
3
Max Pool K=2,5=2
3
FC 2000
3
FC 1000
3
FC 400
3
Output: 121

Input: 6400
J
64 Conv K=3,5=1,P=1
3
64 Conv K=3,5=1,P=1
J
Max Pool K=2,5=2
3
128 Conv K=5,5=1,P=0
3
128 Conv K=5,5=1,P=0
3
Max Pool K=2,5=2
3
256 Conv K=5,5=1,P=0
J
256 Conv K=5,5=1,P=0
J
Max Pool K=2,5=2
3
FC 2000
3
FC 1000
3
FC 400
3
Output: 121

Table 1: Architectures of the models tested in the project, ReLU activations after each convolutional/fully connected layer are

not shown for brevity




Appendix B: Sample Python Code

# Import Libraries

import torch

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import torch.optim as optim

import torch.nn as nn

import torch.nn.functional as F

from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
import torchvision

# Set to GPU

device = torch.device("cuda:0" 1if torch.cuda.is available() else
Al CpU." )
device

# ## Model #1: 2C - 2FC

# Baseline model

class Netl (nn.Module) :
def init (self):

super (Netl, self). init ()
self.convl = nn.Conv2d(1l, 6, 5)
self.pool = nn.MaxPool2d (2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fcl = nn.Linear (16 * 17 * 17, 400)
self.fc2 = nn.Linear (400, 200)
self.fc3 = nn.Linear (200, 121)

def forward(self, x):

= self.pool (F.relu(self.convl (x)))
= self.pool (F.relu(self.conv2(x)))
= x.view(-1, 16 *17 *17)

= F.relu(self.fcl (x))

= F.relu(self.fc2(x))

= self.fc3 (x)

return x

XoX X X X X

modell = Netl ()



modell.to (device)

optimizerl

# ## Model #2: 3C — 2FC

class Net2 (nn.Module) :
def  init (self):

optim.SGD (modell.parameters (),

1lr=0.01, momentum=0.9)

3,padding=1)

super (Net2, self). init ()
self.convl = nn.Conv2d(1l, 20, 5)
self.pool = nn.MaxPool2d (2, 2)
self.conv2 = nn.Conv2d (20, 40, 5)
self.conv3 = nn.Conv2d (40 , 60,
self.fcl = nn.Linear (60 * 8 * 8, 400)
self.fc2 = nn.Linear (400, 200)
self.fc3 = nn.Linear (200, 121)

def forward(self, x):
x = self.pool (F.relu(self.convl (x)))
x = self.pool (F.relu(self.conv2(x)))
x = self.pool (F.relu(self.conv3(x)))
X = x.view(-1, 60 * 8 * 8)
x = F.relu(self.fcl (x))
x = F.relu(self.fc2(x))
x = self.fc3(x)

return X

model2 = Net2 ()
model2.to (device)

optimizer2 = optim.

SGD (model?2.parameters (),

1r=0.01,momentum=0.9)

# ## Model #3: 5C - 2FC
class Net3 (nn.Module) :
def init (self):

super (Net3, self). init ()
self.pool = nn.MaxPool2d (2, 2)
self.convl = nn.Conv2d(1l, 64, 3, padding=1)
self.conv2 = nn.Conv2d (64, 128, 3, padding=1)
self.conv3 = nn.Conv2d (128, 128, 3,padding=1)
self.conv4 = nn.Conv2d (128, 256, 3,padding=1)
self.convb = nn.Conv2d (256, 256, 3,padding=1)
self.fcl = nn.Linear (256*10*10, 400)
self.fc2 = nn.Linear (400, 200)
self.fc3 = nn.Linear (200, 121)



def forward(self,

xX) :

x = self.pool (F.relu(self.convl (x)))
x = F.relu(self.conv2(x))

x = self.pool (F.relu(self.conv3(x)))
x = F.relu(self.convd (x))

x = self.pool (F.relu(self.convb(x)))
X = x.view (-1, 256 * 10 * 10)

x = F.relu(self.fcl(x))

x = F.relu(self.fc2(x))

x = self.fc3(x)

return X

model3 Net3 ()
model3.to (device)

optimizer3

# ## Model #4: 5C - 3FC

class Net4d (nn.Module) :
def init (self):
super (Net4,
self.pool
self.convl
self.conv2
self.conv3
self.conv4
self.convb
self.fcl
self.fc2
self.fc3
self.fc4d

= nn.
nn
nn
nn.

nn.

def forward(self,
self.pool (F.
= F.relu(self.
self.pool (F.
F.relu(self.

self.pool (F.

Conv2d (1,

.Conv2d (64,
.Conv2d (128,
Conv2d (128,
Conv2d (256,
= nn.Linear (256*10*10,
= nn.Linear (2000,
nn.Linear
nn.Linear (400,

(
(1000,
(

xX) :

relu(self.
conv? (x))
relu(self.
conv4 (x))
relu(self.

KX X X X X X X X X

x.view (-1,

256 * 10 *

optim.SGD (model3.parameters (),

self). init ()
nn.MaxPool2d (2,

2)
64,
128,

128,

256,

256,

3,
3,

1000)
400)

121)
convl (x)))

conv3 (x)))

convb (x)))
10)

F.relu(self.fcl(x))
F.relu(self.fc2(x))
F.relu(self.fc3(x))
self.fc4d (x)

return x

1lr=0.01, momentum=0.9)

padding=1)
padding=1
3,padding=1
3,padding=1
3,padding=1
2000)

)
)
)
)



model4d = Netd ()
modeld.to (device)

optimizerd = optim.SGD (modeld.parameters (), 1lr=0.004,momentum=0.9)

# ## Model #5: 6C — 3FC

class Netb5 (nn.Module) :
def  init (self):
super (Net5, self). init ()
self.pool = nn.MaxPool2d (2, 2)
self.convl = nn.Conv2d(1l, 64, 3, padding=1)
self.conv2 nn.Conv2d (64, 64, 3, padding=1)
self.conv3 nn.Conv2d (64, 128, 3, padding=1)
self.conv4 nn.Conv2d (128, 128, 3,padding=1)
( )
)

self.convb nn.Conv2d (128, 256, 3,padding=1
self.convé = nn.Conv2d (256, 256, 3,padding=1
self.fcl = nn.Linear (256*10*10, 2000)
self.fc2 = nn.Linear (2000, 1000)

self.fc3 nn.Linear (1000, 400)

self.fc4 = nn.Linear (400, 121)

def forward(self, x):

= F.relu(self.convl (x))

= self.pool (F.relu(self.conv2(x)))
= F.relu(self.conv3(x))

= self.pool(F.relu(self.convd(x)))
= F.relu(self.convb(x))

self.pool (F.relu(self.convb (x)))
x.view (-1, 256 * 10 * 10)

= F.relu(self.fcl (x))

= F.relu(self.fc2(x))

= F.relu(self.fc3(x))

= self.fc4d (x)

return x

XX X X X X X X X X X
Il

modelb = Netb ()
modelb5.to (device)

optimizer5 = optim.SGD (model5.parameters(), 1lr=0.004,momentum=0.9)

# ## Train & Evaluate functions

#

# Code i1s initially from : https://www.kaggle.com/juiyangchang/cnn-
with-pytorch-0-995-accuracy



def train model (epoch,model, optimizer,train loader):
model.train ()
#exp lr scheduler.step()

for batch idx, (data, target) in enumerate(train loader):

if torch.cuda.is available():
data = data.cuda/()
target = target.cuda()

optimizer.zero grad()
output = model (data)
loss = criterion (output, target)

loss.backward ()
optimizer.step ()

if (batch idx + 1)% 300 ==
print ('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss:
{:.6f}'.format (
epoch, (batch idx + 1) * len(data),
len(train loader.dataset),
100. * (batch idx + 1) / len(train loader),
loss.item()))

def evaluate (data loader,model) :
model.eval ()
loss = 0
correct = 0

for data, target in data loader:
#data, target = Variable(data, volatile=True),
Variable (target)
if torch.cuda.is available():
data = data.cuda/()
target = target.cuda/()

output = model (data)

loss += F.cross_entropy (output, target,
reduction="sum") .item()

pred = output.data.max(l, keepdim=True) [1]
correct += pred.eg(target.data.view as(pred)) .cpu() .sum()

loss /= len(data loader.dataset)



def

print ('\nAverage Train loss: {:.4f}, Accuracy: {}/{}
({:.3f}%)\n'.format (
loss, correct, len(data loader.dataset),
100. * correct / len (data loader.dataset)))

t loss.append(loss)
t_acc.append(correct.item()/len(data_loader.dataset))

evaluate val (data loader,model) :
model.eval ()

loss = 0

correct = 0

for data, target in data loader:
#data, target = Variable(data, volatile=True),
Variable (target)
if torch.cuda.is available():
data = data.cuda/()
target = target.cuda ()

output = model (data)

loss += F.cross_entropy (output, target,
reduction="sum") .item()

pred = output.data.max(l, keepdim=True) [1]
correct += pred.eqg(target.data.view as(pred)) .cpu() .sum()

loss /= len(data loader.dataset)

print ('\nAverage Validation loss: {:.4f}, Accuracy: {}/{}
({:.2f}%)\n"'.format (
loss, correct, len(data loader.dataset),
100. * correct / len(data loader.dataset)))

v_loss.append(loss)
v_acc.append(correct.item()/len(data_loader.dataset))

# Set cross entropy loss

criterion = nn.CrossEntropyLoss ()

# ## Get data and hold transformations



from torch.utils.data import Dataset

class MyDataset (Dataset) :
def init (self, subset, transform=None):
self.subset = subset
self.transform = transform

def getitem (self, index):
X, y = self.subset[index]
if self.transform:
x = self.transform(x)
return x, VY

def len (self) :

return len (self.subset)

# Hold transformations

transform_notrans = transforms.Compose (
[transforms.Grayscale (num output channels=1),
transforms.Resize ((80,80)),
transforms.ToTensor (),
transforms.Normalize (mean=(0.95,), std=(0.2,))1)

transform flips = transforms.Compose (
[transforms.Grayscale (num output channels=1l),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip (),
transforms.Resize ((80,80)),
transforms.ToTensor (),
transforms.Normalize (mean=(0.95,), std=(0.2,))1])

transform = transforms.Compose (
[transforms.Grayscale (num output channels=1),
transforms.RandomHorizontalFlip (),
transforms.RandomVerticalFlip (),

transforms.RandomAffine (degrees=7,translate=(0.1,0.1),fillcolor=2

55),

transforms.Resize ((80,80)),
transforms.ToTensor (),
transforms.Normalize (mean=(0.95,), std=(0.2,))1)

# Load data and get train/validation splits

data = ImageFolder (root='data/train')



train,validation = torch.utils.data.random split (data, (len(data)-
validation size,validation size))

validation = MyDataset(validation, transform = transform notrans)

validation loader = torch.utils.data.DatalLoader (validation,
batch size=16, shuffle = True, num workers=0)

# Sample a random image

x,y = datal[np.random.randint (30336) ]
plt.imshow (x.numpy () [0], cmap="gray")
plt.show ()

print (data.classes|[y])

train notrans = MyDataset (train, transform = transform notrans)
train flips = MyDataset (train,transform = transform flips)
train = MyDataset (train,transform=transform)

train loader notrans = torch.utils.data.DataLoader (train notrans,
batch size=32, shuffle = True, num workers=0)

train loader flips = torch.utils.data.Dataloader (train flips,
batch size=32, shuffle = True, num workers=0)

train loader = torch.utils.data.Dataloader (train, batch size=32,
shuffle = True, num workers=0)

trans test = pd.DataFrame (index=[x for x in range(30)])

v _loss = []
v_acc = []

for epoch in range (30):
train model (epoch,modell, optimizerl, train loader notrans)
evaluate (train loader notrans,modell)
evaluate val (validation loader,modell)

trans test = trans test.assign(nol = pd.Series(v_loss))
trans test trans test.assign(no2 = pd.Series(v_acc))



# This is to reset the model

for layer in modell.children() :
if hasattr(layer, 'reset parameters'):
layer.reset parameters ()

# to hold validation values

v _loss = []
v_acc = []

for epoch in range(30):
train model (epoch,modell, optimizerl, train loader flips)
evaluate (train loader flips,modell)
evaluate val (validation loader,modell)

trans test = trans test.assign(flipl = pd.Series(v_loss))
trans test trans test.assign(flip2 pd.Series (v_acc))

for layer in modell.children() :
if hasattr(layer, 'reset parameters'):
layer.reset parameters ()

v _loss = []
v_acc = []

for epoch in range (30):
train model (epoch,modell, optimizerl, train loader)
evaluate (train loader,modell)
evaluate val (validation loader,modell)

trans test = trans test.assign(alll = pd.Series(v_loss))
trans test trans test.assign(all2 = pd.Series(v_acc))

#save to csv file so we can create chart in Excel
trans test.to csv("trans test.csv")

# # Determining the Batch size



# Create different train loaders with different batch sizes

train loaderl6é = torch.utils.data.Dataloader(train, batch size=16,
shuffle = True, num workers=4)

train loader32 = torch.utils.data.Dataloader (train, batch size=32,
shuffle = True, num workers=4)

train loader48 = torch.utils.data.Dataloader(train, batch size=48,
shuffle = True, num workers=4)

train loader64 = torch.utils.data.DatalLoader (train, batch size=64,
shuffle = True, num workers=4)

# empty dataframe to hold results

train batch test = pd.DataFrame (index=[x for x in range(50)])
val batch test = pd.DataFrame (index=[x for x in range(50)])

# ## Using model 1 only

# ## Batch size = 16

for layer in modell.children() :
if hasattr(layer, 'reset parameters'):
layer.reset parameters ()

n epochs = 50

t =[]
v = []

for epoch in range(n_epochs):
train model (epoch,modell, optimizerl, train loaderl6)
evaluate (train loaderl6,modell)
evaluate val (validation loader,modell)

train batch test = train batch test.assign(modell bsl6 = pd.Series(t))
val batch test = train batch test.assign(modell bsl6t = pd.Series(v))

# ## Batch size = 32

for layer in modell.children() :
if hasattr(layer, 'reset parameters'):
layer.reset parameters ()



n_epochs = 50

t =[]
v = []

for epoch in range(n_ epochs):
train model (epoch,modell,optimizerl, train loader32)
evaluate (train loader32,modell)
evaluate val (validation loader,modell)

train batch test = train batch test.assign(modell bs32 = pd.Series(t))
val batch test = train batch test.assign(modell bs32 = pd.Series(v))

# ## Batch size = 48

for layer in modell.children() :
i1f hasattr(layer, 'reset parameters'):
layer.reset parameters ()

n_epochs = 50
t =1l

v = []

for epoch in range(n epochs):
train model (epoch,modell, optimizerl, train loader48)
evaluate (train loader48,modell)
evaluate val (validation loader,modell)

train batch test = train batch test.assign(modell bs48 = pd.Series(t))
val batch test = train batch test.assign(modell bs48 = pd.Series(v))

# ## Batch size = 64

for layer in modell.children() :
if hasattr(layer, 'reset parameters'):
layer.reset parameters ()
n_epochs = 50
t =[]

v = []

for epoch in range(n_ epochs):



train model (epoch,modell, optimizerl, train loader64)
evaluate (train loader64,modell)
evaluate val (validation loader,modell)

train batch test = train batch test.assign(modell bs64 = pd.Series(t))
val batch test = train batch test.assign(modell bs64 = pd.Series(v))

# output as csv

val batch test.to csv("Batch Size.csv")

# # Train models!

train loss.to csv("trainloss.csv")
train acc.to _csv("trainacc.csv")
val loss.to csv("valloss.csv")

val acc.to csv("valacc.csv")

# dataframes to hold results

train loss = pd.DataFrame (index=[x for x in range(50)])
train acc = pd.DataFrame (index=[x for x in range(50)])
val loss = pd.DataFrame (index=[x for x in range(50)])

val acc = pd.DataFrame(index=[x for x in range(50)])

# 50 epochs
n_epochs = 50

# ## Model 1

t loss = []
t acc = []

v _loss = []
v_acc = []

for epoch in range(n_ epochs):
train model (epoch,modell, optimizerl, train loaderl6)
evaluate (train loaderl6,modell)
evaluate val (validation loader,modell)



train loss = train loss.assign(Model 1 = pd.Series(t loss))
val loss = val loss.assign(Model 1 = pd.Series(v_loss))
train acc = train acc.assign(Model 1 = pd.Series(t acc))
val acc = val acc.assign (Model 1=pd.Series(v_acc))

# ## Model 2

for epoch in range(n_epochs):
train model (epoch,model2, optimizer2, train loaderl6)
evaluate (train loaderl6,model2)
evaluate val (validation loader,model2)

train loss = train loss.assign(Model 2 = pd.Series(t loss))
val loss = val loss.assign(Model 2 = pd.Series(v_loss))
train acc = train acc.assign(Model 2 = pd.Series(t acc))

val acc = val acc.assign(Model 2=pd.Series(v_acc))

# ## Model 3

t loss = []
t acc = []

v _loss = []
v_acc = []

for epoch in range(n_ epochs):
train model (epoch,model3, optimizer3, train loaderl6)
evaluate (train loaderl6,model3)
evaluate val (validation loader,model3)



train loss = train loss.assign(Model 3 = pd.Series(t loss))
val loss = val loss.assign(Model 3 = pd.Series(v_loss))
train acc = train acc.assign(Model 3 = pd.Series(t acc))
val acc = val acc.assign (Model 3=pd.Series(v_acc))

# ## Model 4

t loss = []
t acc = []

v _loss = []
v_acc = []

for epoch in range(n epochs):
train model (epoch,model4,optimizer4, train loaderl6)
evaluate (train loaderl6,model4)
evaluate val (validation loader,model4)

train loss = train loss.assign(Model 4 = pd.Series(t loss))
val loss = val loss.assign(Model 4 = pd.Series(v_loss))
train acc = train acc.assign(Model 4 = pd.Series(t acc))

val acc = val acc.assign(Model 4 =pd.Series(v_acc))

# ## Model 5

t loss = []
t acc = []

v _loss = []
v_acc = []

for epoch in range(n_epochs) :
train model (epoch,model5,optimizer5, train loaderl6)
evaluate (train loaderl6,modelb)
evaluate val (validation loader,modelb)



train loss = train loss.assign(Model 5 = pd.Series(t loss))
val loss = val loss.assign(Model 5 = pd.Series(v_loss))
train acc = train acc.assign(Model 5 = pd.Series(t acc))
val acc = val acc.assign(Model 5 =pd.Series(v_acc))

# Save to csv file for graphing results on excel
train loss.to csv("trainloss2.csv")
train acc.to_csv("trainacczZ.csv")

val loss.to csv("valloss2.csv")
val acc.to csv("valacc2.csv")

# ## Different Optimizations!

# empty dataframe to hold values

Opt val loss =
Opt val acc =

pd.DataFrame (index=[x for x in range(50)1])
pd.DataFrame (index=[x for x in range (50)1])

# we use Model 5

class Netb (nn.Module) :
def init (self):

super (Net5, self). init ()
self.pool = nn.MaxPool2d (2,
self.convl = nn.Conv2d(1,
self.conv2 nn.Conv2d (
self.conv3 nn.Conv2d (
self.conv4 nn.Conv2d (128,
self.convb nn.Conv2d (128, 256,
self.conve = nn.Conv2d (256, 256,
self.fcl = nn.Linear (256*10*10,
self.fc2 = nn.Linear (2000, 1000)
self.fc3 nn.Linear (1000, 400)
self.fc4 = nn.Linear (400, 121)

2)
64,

64,
128,

128,

3, padding=1)
3, padding=1
3, padding=1

)
)
3,padding=1)
)
)

64,
64

3,padding=1
3,padding=1
2000)

def forward(self, x):

= F.relu(self.
= self.pool (F.
F.relu(self.
self.pool (F.
F.relu(self.
= self.pool (F.

KoM X X X X
Il

convl (x))
relu(self.conv2(x)))
conv3 (x))
relu(self.convd (x)))
convb (x))
relu(self.convo(x)))



.view (-1, 256 * 10 * 10)
.relu(self.fcl (x))
.relu(self.fc2(x))

= F.relu(self.fc3(x))

= gself.fcd (x)

return x

o X

X
X
X =
X
X

model5 = Netb5 ()
modelb5.to (device)

# Initialize diffferent optimizers

optimizer5 nesterov = optim.SGD (model5.parameters(),
1r=0.004, momentum=0.9, nesterov=True)

optimizer5 adagrad = optim.Adagrad(model5.parameters())

optimizer5 adam = optim.Adam(model5.parameters())

# ## Train with Nesterov's Algorithm

v _loss = []
v_acc = []

for epoch in range(n_epochs):
train model (epoch,model5, optimizer5 nesterov,train loaderl6)
evaluate (train loaderl6,modelb)
evaluate val (validation loader,model5)

Opt val loss = Opt val loss.assign(Nesterov = pd.Series (v _loss))
Opt val acc = Opt val acc.assign(Nesterov = pd.Series(v_acc))

# ## Adagrad

for layer in model5.children():
if hasattr(layer, 'reset parameters'):
layer.reset parameters ()

v _loss = []
v_acc = []

for epoch in range(n_ epochs):
train model (epoch,model5, optimizer5 adagrad,train loaderl6)



evaluate (train loaderl6,modelb)
evaluate val (validation loader,modelb)

Opt val loss = Opt val loss.assign(Adagrad = pd.Series(v_loss))
Opt val acc = Opt val acc.assign(Adagrad = pd.Series(v_acc))

# ## Adam

for layer in model5.children():
if hasattr(layer, 'reset parameters'):
layer.reset parameters ()

v _loss = []
v_acc = []

for epoch in range(n epochs):
train model (epoch,model5, optimizer5 adam,train loaderl6)
evaluate (train loaderl6,modelb)
evaluate val (validation loader,modelb)

Opt val loss = Opt val loss.assign(Adam = pd.Series(v_loss))
Opt val acc = Opt val acc.assign(Adam = pd.Series(v_acc))
# save results!

Opt val loss.to csv("opt val.csv")
Opt val acc.to csv("opt val acc.csv")



